Showing posts with label biological pump. Show all posts
Showing posts with label biological pump. Show all posts

Thursday, August 18, 2016

How do tiny animals in the ocean influence atmospheric carbon dioxide?

By Emma Cavan 

The important role  small (< 5 mm) plants and animals play in the ocean is widely unknown to the public, as the media prefers to broadcast ‘cuddly,’ charismatic  animals such as dolphins and whales. However, the plankton are very important. Plankton are defined as organisms (both plants and animals) that cannot swim against the currents and range from microscopic algae to huge jellyfish. 

My research is on the biological carbon pump, described by Yonara Garcia in a previous post ‘Ocean fertilization and climate change’ (May, 2016).  The biological carbon pump describes how phytoplankton (plants) and zooplankton (animals) drawdown carbon dioxide from the atmosphere to the deep oceans.  I am most interested in how this biology transports organic carbon (as particles) through the upper ocean (top 500 m).


1009.bmp
Image of crustaceous zooplankton 
about 0.5 mm in length. Photo by Emma Cavan.
Zooplankton range from tiny crustaceans (shrimp-like animals) to much larger salps and jellyfish. Here I am just going to concentrate on the crustaceans. One commonly known crustaceous zooplankton is krill, which are large (2-5 mm) for their group and are often found in abundance in the Southern Ocean. They are the food prey for large baleen whales such as humpback whales. Zooplankton change how much organic carbon (originally photosynthesised by phytoplankton in the surface ocean) reaches the deep sea as they:
1. Respire inorganic carbon; 
2. Ingest the carbon and release some as packaged faecal pellets;
3. Break particles into smaller pieces.

To further complicate the process zooplankton can migrate 100s of metres per day vertically, so they may eat at the surface at night, then at dawn sink deeper in the ocean and release faecal pellets there, increasing the amount of carbon reaching the deep ocean and away from the atmosphere. Hence zooplankton are particularly hard to accurately represent in biogeochemical models! I have been to sea in the Southern Ocean and the Equatorial Pacific to find out how zooplankton affect the transfer of organic carbon to the deep ocean.

Southern Ocean
Macintosh HD:Users:emma:Desktop:emma:Screen Shot 2015-04-20 at 22.33.07.png
At sea in the Southern Ocean, Elephant Island where
Ernest Shackleton landed is in the background.
Working in the Southern Ocean is an amazing experience. It has to be one of the most beautiful places on Earth. We were surrounded by so many penguins every day! Back to the science though… As I said, the Southern Ocean has a high number of crustaceous zooplankton such as krill and copepods. They can thrive in the cool waters around Antarctica but are very patchy (not evenly spread throughout).


1045.bmp
Faecal pellet, 0.3 mm in length.
Photo by Emma Cavan.
Here I collected sinking organic particles (full of carbon) and they turned out to be mostly zooplankton faecal pellets (as opposed to detrital phytoplankton). This suggests that most of the organic carbon reached the seafloor from zooplankton grazing on the phytoplankton and releasing faecal pellets. The number of zooplankton present was shown to actually affect how many particles sunk out of the surface ocean. Further, whether zooplankton were feeding on fresh phytoplankton (brown faecal pellets) or detritus or their own faeces (white faecal pellets – and yes, they eat their own poo!) affected how efficiently organic carbon reached the deep ocean! So these little critters were playing an important role in transferring organic carbon from the surface to the deep ocean here.

Equatorial Pacific
Working here was very different from the Southern Ocean; it was extremely hot, and I saw barely any clouds the entire cruise. We were working off the Pacific coast of Guatemala, and while there was a lot less sea life here, I did see a lot of turtles and even a Thresher shark! 


                  RRS James Cook at port in Panama before the cruise. Photo by Emma Cavan.

Compared to the Southern Ocean, the Equatorial Pacific is very stable with little change in seasons. Between 100-1000 m in this area of the ocean, oxygen concentrations plummet, so organisms are extremely oxygen starved at these depths. Oxygen minimum zones (OMZs) are common around the globe, particularly near coasts such as off of Peru and the west coast of Africa. Many studies have shown that in OMZs, a much higher proportion of organic carbon reaches the deep ocean compared to rest of the world. But the reason for this is still unknown and so I went to sea to find out.

There are two main reasons why organic carbon doesn’t reach the deep ocean:
    1. It is consumed and respired by zooplankton;
    2. Or it is hydrolysed by bacteria.


DSCN0874.JPG
Micro-respiration system used to measure
bacterial respiration on particles. An oxygen sensor
(blue) is inserted into the small vials which
contain particles to measure oxygen concentrations
over a few hours. Photo by Emma Cavan.
So I wanted to test if bacterial ‘remineralisation’ (process of converting organic carbon back to inorganic carbon, like carbon dioxide) is reduced in OMZs because bacterial metabolism is limited by the low oxygen concentrations. To do this, I measured the respiration of microbes on particles.What this showed was that actually microbes are very well adapted to live in the low oxygen conditions and were responsible for most of the organic carbon degradation! 


This meant that likely a reduction in zooplankton respiration and processing of particles in the OMZ must be why such a high proportion of the organic carbon reaches the deep ocean. This seems like a reasonable hypothesis as studies have shown zooplankton abundance is low in OMZs and their metabolism is greatly reduced. The life cycle of bacteria is much shorter than zooplankton so they can adapt much faster to challenging conditions.  So in the Equatorial Pacific, the absence of zooplankton means more carbon reaches the deep ocean and cannot be exchanged with the atmosphere.

To summarise, zooplankton have a complicated relationship with carbon in the ocean. Both their presence and absence can increase the amount of carbon in the deep ocean, it just depends on the oceanic ecosystem they are part of. This is why it is complicated to model their effect on the carbon cycle and more work is needed to constrain it better. But we should remember tiny animals do indeed influence how much carbon dioxide is in the atmosphere. Who would have thought it?!

About Emma: 
Emma is a marine biologist turned biological oceanographer (which basically means marine biologist of small organisms!). She grew up on the south coast of England and attended the National Oceanography Centre at the University of Southampton, UK, for both her undergraduate and PhD degrees. She has just finished her PhD and is hoping to stay in academia and continue researching. Emma is also very interested in connecting science and policy and spent 3 months working at the Royal Society in London in their science policy centre. Aside from science Emma likes to travel as much as possible and has been able to do so both for pleasure and with work. She also loves kayaking, camping, reading, napping and socialising.
Follow Emma on twitter @emma_cavan or visit http://emmacavan.wix.com/emmacavan




Wednesday, May 18, 2016

Ocean fertilization and climate change



Have you heard of geoengineering? It’s a tool becoming increasingly used, but is often controversial because, in some cases, the result can be completely unexpected!
Today we’ll talk about a polemic experiment carried out in July 2012 by Russ George, an American businessman who dumped approximately 100 tons of iron sulphate in the Pacific Ocean as part of a geoengineering project off the west coast of Canada (http://www.nature.com/news/ocean-fertilization-project-off-canada-sparks-furore-1.11631).


Ocean fertilization by iron sulfate. Source: http://officerofthewatch.com/2012/11/05/canada-iron-fertilization-incident/

Iron is considered an essential element, often limiting, for phytoplankton growth. Phytoplankton perform photosynthesis, a process in which sunlight is used as an energy source and absorbs carbon dioxide (CO2) and water to produce organic matter in the form of carbohydrates. Phytoplankton cells are formed from these carbohydrates with the addition of other substances such as proteins, amino acids, and other molecules.

In 1980, oceanographer John Martin proposed that certain regions of the ocean (the areas called HNLC - High Nutrient, Low Chlorophyll), although rich in nutrients, would be poor in primary production due to lack of iron. Thus, the addition of iron should increase the production of phytoplankton and hence affect the carbon cycle, reducing CO2 levels in the atmosphere. His famous phrase “Give me half a tanker full of iron and I’ll give you an Ice Age” caused great excitement because he believed that if certain areas of the ocean were fertilized, the effects of global warming could be reversed, cooling the Earth.

Thus arose the idea that the American businessman put into practice. Russ and his team released a certain amount of iron into the sea, believing it would promote photosynthetic activity and thus increase the efficiency of the carbon sequestration processes in the ocean. Just like the process to fertilize a crop for it to go grow faster! This issue has generated much controversy because it conflicts with ethical and political questions about the effects that an intervention like this would bring to a complex ecosystem. We still know relatively little about the ocean. To better understand why the idea of this project is so controversial, let’s first talk about some important processes in the “wonderful world ocean.”

Have you ever heard of “physical pump”? Or a “biological pump”? No, it’s not a kind of weapon of war to decimate an enemy population. The physical pump is the process related to the solubility of CO2 in the ocean (solubility = maximum amount of a substance that can be dissolved in a liquid). The biological pump takes into account what happens to the CO2 after it is dissolved in the ocean, when a fraction of dissolved carbon is absorbed through photosynthesis, in the surface layers of the ocean, and transported to the bottom. The diagram below explains how carbon is transported in the ocean.

Carbon movement in the ocean system. 1) Using solar energy, carbon dioxide is fixed by phytoplankton in the photic zone (where there is light). 2) Part of this organic matter is consumed by zooplankton and some heterotrophic microorganisms. 3) Other organic matter is exported from the photic zone toward the mesopelagic zone (about 1000 m deep), and a fraction of this organic matter is remineralized while the rest goes to the bottom of the ocean, where it will take thousands of years to return to the surface. Adapted from United States Joint Global Ocean Flux Study.

CO2 is a gas capable of dissolving in the surface of the oceans. This solubility mechanism is related to the concentration of this gas in the atmosphere and the water temperature: the more CO2 in the atmosphere and the lower the temperature, the greater the amount of gas dissolved in the ocean surface. Once dissolved in water, the CO2 passes to a further stage of the cycle, where it can be absorbed by photosynthetic marine organisms.

Part of the organic matter formed during photosynthesis is used in cellular respiration and released back into the seawater as CO2. The other fraction, which was used in the formation of the cell, is consumed by zooplankton (primary consumers in marine food webs - read more here) and/or transported by gravity to the bottom of the ocean through  “marine snow,” particles made up of food debris and fecal pellets coming from feeding zooplankton, shells, and dead microorganisms. This carbon transfer process to the deep ocean decreases the amount of carbon in the photic zone (zone that receives enough sunlight for photosynthesis to occur), sequestering (removing) billions of tons of carbon from the atmosphere each year. Some studies have estimated that the biological pump is responsible for removing about 5-15 gigatons of carbon per year (Henson et al., 2011).

Marine Phytoplankton. Source: http://www.smithsonianmag.com/science-nature/vanishing-marine-algae-can-be-monitored-from-a-boat-with-your-smartphone-2785190/?no-ist

You can probably imagine how important this removal is when looking at the large amount of carbon that our industrial activities, cars, and planes have emitted into the atmosphere over the last few years. It is important to remember that the much discussed global warming, among other issues, is largely caused by an excess of carbon in the atmosphere. According to the IPCC (Intergovernmental Panel on Climate Change) 2014,  in 2010 alone, 49 gigatons of carbon were released into the atmosphere by human activities. And that is precisely why these experiments with iron have gained so much popularity.

Sounds simple, right? Okay, solved the problem of global warming! Let's fertilize the oceans! But it is not so simple. Interfering in natural ecosystems is an extremely sensitive subject, which can cause incalculable and irreparable damage.

Some researchers performed similar experiments as the American businessman and concluded that despite the fertilization increasing the rate of photosynthesis, it can trigger changes in ocean chemistry by changing the operation of the entire system. For example, increased photosynthetic rates by phytoplankton are directly proportional to the amount of dimethylsulfide (DMS - volatile sulfur in reduced form) secreted by these microalgae in water, which is vaporized and form condensation particles in the air (i.e. more photosynthesis by the phytoplankton = more dimethylsufide into the air). In the atmosphere, these particles facilitate the formation of clouds, which would be great, because with the increased formation of clouds there is increased reflection of solar radiation and thus greater cooling of the planet. However, not all types of clouds have the property to cool the planet. Recent studies suggest that other climatic factors may also affect the distribution and properties of clouds, which could increase the temperature of the planet. Furthermore, it was observed that fertilization also increases the production of nitrous oxide (N2O), a molecule that heats 320 times more than CO2.

Another study, published in April 2014 in Geophysical Research Letters, showed that more than 66% of the carbon sequestered by the ocean returns to the atmosphere in 100 years. That is, the biological pump may lessen the temperature of the Earth, sequestering carbon from the atmosphere, but we do not know what will happen when this carbon returns. Controversial enough for you?

Image obtained by NASA, satellite view of a phytoplankton bloom.

Thus, although the processes that occur in the ocean are responsible for reducing the concentration of CO2 in the atmosphere, altering the system may not be the best solution because there are many chemical, physical, and biological processes that are not fully understood. While we did not reach a more integrated understanding of these processes, the reduction of CO2 emissions would be much more efficient and safer than trying to remedy a problem by manipulating a process so complex and poorly understood.


Literature:






Henson, S. A., R. Sanders, E. Madsen, P. J. Morris, F. Le Moigne, and G. D. Quartly (2011), A reduced estimate of the strength of the ocean's biological carbon pump, Geophysical Research Letters, 38